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ABSTRACT

The design and execution of a networked virtual environment (NVE) are

challenging tasks made even more difficult by the fact that NVEs are becoming more

complex and difficult to manage.  In a distributed environment, each simulation not only

computes its own behaviors and publishes them to the network, but it must accurately

represent all other entities participating in the NVE.  To simplify this task, this thesis

implements method to make distributed simulations dynamically extensible, flexible,

specific, and consistent.  Bamboo provides the ability to dynamically extend the virtual

environment by defining a convention by which plug in modules can be added during

simulation runtime.  The HLA provides the network communication layer that transports

entity state updates to all members of the distributed simulation.  These two tools

combine to create a unique solution to problems inherent in designing modern networked

virtual environments.  The implementation is dynamically extensible which increases the

flexibility implementers have in designing virtual environments. The HLA transports the

entity updates and the module name that must be used to represent the entity.  This

method allows programmers to design only their module because modules representing

other entities will load as needed during the execution.  This method of implementing

virtual environments that promises to streamline the design and implementation process.
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I. INTRODUCTION

A. MOTIVATION

The design and execution of a networked virtual environment (NVE) are

challenging tasks made even more difficult by the fact that NVEs are becoming more

complex and difficult to manage.  In a distributed environment, each simulation not only

computes its own behaviors and publishes them to the network, but it must accurately

represent all other entities participating in the NVE.  To simplify this task, a method must

be devised to make distributed simulations dynamically extensible, flexible, specific, and

consistent.  A dynamically extensible virtual environment would allow users to change

the executable at runtime to whatever state is specified by the user. The challenge is to

design a system that allows users to design entity definitions that can be loaded and

unloaded during execution.   With true dynamic extensibility comes flexibility, and

designers are not tied to compile time determinations of behavior.   Consistency in this

sense means all sites participating in the NVE need the same definitions for each entity

and the terrain model being used.  Finally, the designer of a specific simulation, such as a

tank simulator, should not need to design the other entities that will be depicted in the

simulation.  These remote objects should be program objects that can be added as needed

during execution. This approach will allow NVE implementers and programmers the

flexibility to design and run NVEs in real time without the problems of inflexibility and

static design inherent to distributed simulation.

B. BACKGROUND

There are many examples of NVEs that use different methods of communicating

entity state and ensuring consistency between simulation locations.  Examples include

DIVE [1] and BRICKNET [2]. These systems share one characteristic.  They are defined

at compile time and are unchangeable during execution.  They allow dynamic allocation

of memory but the definitions of each entity are defined at compile time and are

unchangeable.

The DIVE core uses peer-to-peer communication between shared virtual worlds.

All DIVE processes connected to the same world are identical.  A DIVE process can

choose what world it is a part of but it can only be a member of one world at a time.

DIVE is limited by the paradigm of distributed, shared memory.  This paradigm creates

significant network traffic trying to keep the shared memory consistent from process to
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process.  While DIVE shared virtual worlds may change during runtime, the method of

communication and the abilities of the system are previously defined and are not

extensible at runtime.

BRICKNET allows the exchange of objects and object updates through

BRICKNET servers.  While it does distribute processing on multiple servers, entities

require the server to update state and define behavior.  Workstations are primarily used to

render the graphics for the user.  Furthermore, BRICKNET object updates are predefined

and the update protocol cannot be modified.

Finally, distributed interactive systems (DIS) like NPSNET [3] are designed on

the premise that each site could build their own simulation and choose how to represent

each type of entity without regard to the consistency of this representation across the

network.  Each site could have its own terrain model and its own representations for each

entity type.  Because of these inconsistencies, DIS simulations are plagued with

discrepancies between entity position and orientation and line of site computations related

to the terrain models.  DIS is highly enumerated and the packets containing entity state

are large and mostly redundant.  These inconsistencies complicate interactions between

entities because the terrain may provide different line of sight computations from one

simulation to the next.  Additionally, the actual polygonal representation and behaviors of

the entity may not be consistent among workstations in the distributed simulation.  This

causes excess network traffic to solve simple interactions between entities and keep entity

state updated accurately between simulation sites.

Until now, there was no way to ensure all simulation sites had the proper

polygonal and behavioral representation for all entities participating in the virtual

environment.  A new system, Bamboo [4], provides such a capability by providing

simulations a framework to dynamically load and unload program modules as the

situation changes in the virtual environment.  High Level Architecture (HLA) [5] replaces

DIS and provides the network communication capabilities.  By implementing the

simulation as a group of program modules, designers solve the problem of ensuring that

every site running in the NVE is consistent with every other.  The designer just ensures

every participant in the NVE knows the network location of all the program modules

making up the NVE.  Then, as the virtual world executes, each site loads and unloads

modules as needed.  All simulation sites have the same representations for each entity as

well as its associated behaviors and controls.

This thesis describes an implementation that uses Bamboo to handle the dynamic

nature of modern NVEs, and HLA to handle the communication between each simulation

site.  The following sections provide an overview of Bamboo and HLA features and how
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they apply to this implementation.  Later chapters provide a detailed description of both

systems.

 C. BAMBOO

 Bamboo enables dynamically scaleable virtual environments hosted on a network.

It achieves this goal by an efficient implementation that provides direct support for the

key issues pertaining to VE development.  These issues include dynamic extensibility,

module dependency, and event handling [4].  Bamboo’s most notable feature is its ability

to dynamically extend its capabilities during run time.  It achieves this goal by

implementing a plug-in metaphor similar to that used by commercial packages like

PhotoShop [6] and Netscape [7].    In addition to the plug-in metaphor, Bamboo

implements a system that allows the user to extend the executable through a series of

callbacks that a newly added module allocates at load time.  The event handler simply

provides an abstraction for handling system-generated events.  The event handler uses the

callback handler to notify registered parties of an event.  Bamboo receives this

notification as a callback.  Module dependency provides a system to ensure that modules

which are required by other modules are loaded first before the depending module.

Bamboo uses callback handlers so multiple callbacks respond to a single event.  This is a

cursory introduction to the features and capabilities of Bamboo.  Chapter two provides a

detailed description of the Bamboo system.

D. HIGH LEVEL ARCHITECTURE

The High Level Architecture (HLA) is the Department of Defense standard for

simulation interoperability [5].  HLA is not software.  It is an architecture that provides

standard methods of defining how distributed simulations will communicate.  It is a set of

specifications that define data objects.  These standards are specified in the HLA Interface

Specification and the Object Model Template (OMT).  The HLA Interface Specification

defines the interface between the simulation and the software that will provide the

network and simulation management services.  The Runtime Infrastructure (RTI) is the

software that provides these services.  The OMT prescribes a common method for

recording the information that will be produced and communicated by each simulation

participating in the distributed exercise.  This discussion of HLA is continued in detail in

Chapter 3.
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E.  THESIS ORGANIZATION

This thesis is organized into the following chapters:

· Chapter I: Introduction. Outlines the organization of the thesis and addresses
the significance of introducing and evaluating a new method for implementing
a networked virtual environment.

· Chapter II: Bamboo.  Discusses in detail the current implementation of
Bamboo and how its capabilities are suited for a networked virtual
environment implementation.

· Chapter III: High Level Architecture. Discusses in detail the current
implementation of the HLA and how its capabilities are suited for a networked
virtual environment implementation.  This chapter includes a detailed
discussion of the run time infrastructure (RTI) and how its capabilities are
exploited in this implementation.

· Chapter IV: Implementation.  Describes the development of the experimental
virtual environment that illustrates the power of combining Bamboo and HLA.

· Chapter V: Results and Limitations.  Describes performance results for the
implementation and certain limitations discovered during development.

· Chapter VI: Conclusions and Recommendations.  Discusses the significance
of the results and gives ideas as to future work that should be completed in
this area.
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II. BAMBOO

 A.  INTRODUCTION

 Bamboo enables dynamically scalable virtual environments hosted on a network

[4].  It achieves this goal by an efficient implementation that provides direct support for

the key issues pertaining to VE development.  These issues include dynamic extensibility,

event handling, and module dependency.  By addressing these issues, Bamboo provides

the ability for the system to dynamically configure itself during runtime.  Specifically, this

framework provides the ability to discover simulation objects on the network at runtime

and automatically load the correct module to represent the entity.

B. DYNAMIC EXTENSIBILITY

Bamboo’s most notable feature is its ability to dynamically extend its capabilities

during run time.  It achieves this goal by implementing a plug-in metaphor, then extends

the idea by adding module dependency, a generalized method of extending the executable

and a generalized event handler.

1. Dependency

Bamboo extends the plug-in metaphor by adding inter-module dependencies.

Tracking inter-module dependencies could be complex.  Fortunately, as Bamboo loads

each module, it verifies that dependent modules load first.  If they are not loaded, it

automatically loads them without specific interaction with the user.  Using Figure 1 as an

example, assume M3 is already loaded.  If M4 loads later, the system verifies the

presence of M2 in memory.  Bamboo loads M2 if it is not in memory.  As M2 is being

loaded Bamboo verifies the presence of M1.  M4 finally loads because Bamboo verified

all its dependencies [4].
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Figure 1: Module Dependency View

2.  Extending the Executable

 Dynamic loading of program modules does not in itself ensure dynamic

extensibility.  Bamboo uses a callback handler that allows each module to attach and

remove itself from the process’s execution loop when being paged in and out of memory.

The callback handler derives from objects that can be named so it is easily located and

manipulated.  The callback itself is recursive and provides two callback handlers, one just

before callback execution and one directly after.  This allows grouping of like

functionality.  For example, rendering engines implement some form of app, cull and

draw as a pipeline.  Users refer to surrounding areas as pre and post app, pre and post

cull, and pre and post draw.  The executable begins to resemble a tree of callbacks.

Figure 2 illustrates how using callbacks and callback handlers to extend the executable

begins to resemble a tree of callbacks.  For instance, a user module may load itself and

depend to the visual and keyboard modules.  At load time, the user module defines

callbacks that provide execution time for the logic in the module. Furthermore, any

pruning or pausing of sub-trees automatically includes its children.  Therefore if a

callback handler is deleted, all of its associated callbacks are also deleted without specific

user interaction.
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Figure 2: Extending the Executable

3.  Event Handling

 The event handler simply provides an abstraction for handling system-generated

events.  The event handler uses the callback handler to notify registered parties of an

event.  Bamboo receives this notification as a callback.  Bamboo uses callback handlers

so multiple callbacks respond to a single event.  For example, a module that captures

keyboard events would monitor the keyboard in a separate thread listening for keys

identified by the user.  In figure 2, the Event Handler Module has multiple callbacks on

two separate keys.  When a key is pressed, then the callbacks are executed in the order

specified.

C. BAMBOO CONCLUSION

Bamboo improves on the plug-in metaphor in three distinct ways.  It provides a

convention for the definition of program modules.  Second, it generalizes a method to

extend the executable, and third, it provides a method to build dependencies between

modules.  Using these features, Bamboo overcomes many of the pitfalls of monolithic

virtual environment architectures by providing modular components and a dynamically

extensible runtime executable.
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III. HIGH LEVEL ARCHITECTURE

A. INTRODUCTION

The High Level Architecture (HLA) provides a common architecture for reuse and

interoperation of simulations.  This means that simulations designed for a specific

purpose may be reused in a different application using the HLA concept of a federation: a

composable set of interacting simulation participants - federates.  The intent is to provide

a standard architecture under which simulations are designed so that they can be reused

thereby reducing the time and cost required creating a new environment for a new

purpose. [5]

The Object Model template (OMT) [8], HLA rules [9] and the Interface

Specification (IF Spec) [10] define the HLA standard.  A final component of the HLA is

the Runtime Infrastructure (RTI).  The OMT describes the essential sharable elements of

the simulation or federation in ‘object’ terms.  In the HLA sense, objects are collections

of attributes that describe simulation entity state that are communicated between federates

operating in the federation.  Second, the IF Spec describes the runtime services provided

to each federate by the RTI.  The RTI is the software component of the HLA that supports

the exchange of data defined by the OMT component.  Finally, The HLA rules

summarize the key principles behind the HLA.

B. OBJECT MODEL TEMPLATE

The HLA is designed to facilitate interoperability.  Hence, the OMT is designed to

provide a means for open information sharing across the simulation community.  The

OMT does not constrain the content, but provides a streamlined format for

communicating to the other users, who may reuse the simulation, and the data inputs and

outputs of the simulation.  The HLA specifies two types of object models: the HLA

Federation Object Model (FOM) and the HLA Simulation Object Model (SOM). The

FOM is a specification of the exchange of public data among the participants in a HLA

federation.  Those participants are called federates.  The HLA FOM describes the set of

objects, their attributes and interactions that are shared between federates in a federation.

The SOM describes the simulation (federate) in terms of the types of objects, attributes,

and interactions it can offer to future federations.
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1. Federation Object Model

The FOM requires information concerning the object classes, object interactions,

class attributes, interaction parameters and a lexicon describing each of the above [8].

a. Object Class Structure Table

 Each object class must be named and its relationship to other classes must

be defined.  All classes must be defined and described in the lexicon.  The result is a table

similar to Table 1 [8].

Object Class Structure Table
<clas s> ( <ps >) [<class> (<ps>)] [<class> (<ps>)] [<class> (<ps>)] [,<class> (<ps>)]*| [<ref>]

[<class> (<ps>)] [<class> (<ps>)] [,<class> (<ps>)]*| [<ref>]
... ...

[<class> (<ps>)] [<class> (<ps>)] [,<class> (<ps>)]*| [<ref>]
[<class> (<ps>)] [<class> (<ps>)] [<class> (<ps>)] [,<class> (<ps>)]*| [<ref>]

... ...
[<class> (<ps>)] [<class> (<ps>)] [,<class> (<ps>)]*| [<ref>]

... ... ...
<clas s> ( <ps >) [<class> (<ps>)] [<class> (<ps>)] [<class> (<ps>)] [,<class> (<ps>)]*| [<ref>]

[<class> (<ps>)] [<class> (<ps>)] [,<class> (<ps>)]*| [<ref>]

... ...
... ... ... ...

Air Vehic le( S) Fixed Wing (S) Fighter-Attack (S) F-14 (P S)
F-16 (P S)
F-18 (P S)

Bomber (S) B-1B (P S)
B-2 (P S)

Rotary Wing (P S)

Table 1: Object Class Structure Table

This table shows the object model used in a federation.  Class Air Vehicle is the base

class for all flying entities.  Class Fixed Wing and Rotary wing inherit from Air Vehicle,

while Fighter-Attack and Bomber inherit from Fixed Wing.  Then F-14, F-16, etc.

describe the specific types of aircraft depicted in the federation.  The (P), (S) and (PS)

stand for publishable, subscribable and both, respectively.  This means that individual

federates can request – subscribe - certain object attributes from the federation.  A

federate may also provide – publish - object attributes to the federation.  If a federate

represents an entity that must interact with entities of the same type, that federate might

publish and subscribe to the same Object Class.
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b. Object Interaction Table

The object interaction table shows the interaction class structure for the

federation.  Table 2 shows the interaction class structure [8].  An interaction is an explicit

action taken by an object that can optionally be directed toward other objects.  In this

case, Weapon Detonate is the base interaction class, and Weapon Detonate at Air Target

and Weapon Detonate at Ground Target are both inherited from Weapon Detonate.  This

table also lists the initiating and receiving object and the affected attributes for each

object.

Object Interaction Table

Interaction Structure Initiating Object Receiving Object/Area
Interaction 
Parameters

Init/ 
Sense/
React

Class Affected 
Attributes

Class Affected 
Attributes

<interaction> [<interaction>] <class> 
[,<class>]*

[<attribute>] 
[,<attribute>]* 

[(<comment>)]*

[<class>] 
[,<class>]*

[<attribute>] 
[,<attribute>]* 

[(<comment>)]*

[<parameter>] 
[,<parameter>]*

<isr>

[<interaction>] <class> 
[,<class>]*

[<attribute>] 
[,<attribute>]* 

[(<comment>)]*

[<class>] 
[,<class>]*

[<attribute>] 
[,<attribute>]* 

[(<comment>)]*

[<parameter>] 
[,<parameter>]*

<isr>

... ... ... ... ... ... ...

<interaction> [<interaction>] <class> 
[,<class>]*

[<attribute>] 
[,<attribute>]* 

[(<comment>)]*

[<class>] 
[,<class>]*

[<attribute>] 
[,<attribute>]* 

[(<comment>)]*

[<parameter>] 
[,<parameter>]*

<isr>

... ... ... ... ... ... ... ...

Weapon
Detonate

Weapon Detonate
at Air Target

Weapon Detonate
at Ground Target

Weapon Velocity,
Acceleration,
Weight,

.

.

Air Vehicle Velocity,
Acceleration,

Weight,

.

.

..

Weapon Location,
Warhead,

Weapon Attitude,

IR

... ... ... ... ... ...

Table 2: Object Interaction Table

The last column in the table shows the three basic categories of interaction:

· Initiates (I): indicates that a federate is currently capable of initiating and sending
interactions of the type specified in that row.

· Senses (S): indicates that a federate is currently capable of subscribing to the interaction
and utilizing the interaction information, without necessarily being able to effect the
appropriate changes to affected objects.

· Reacts (R): indicates that federate is currently capable of subscribing and properly
reacting to the interactions of the type specified by effecting the appropriate changes to
any owned attributes of the affected objects.
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In a FOM definition, all of the above are valid entries.  There would not be a listing if

there was not a federate responsible for the interaction.

a. Attribute/Parameter Table

Finally, the Attribute/Parameter Table [8] defines characteristics pertinent

to each Class/Interaction described in Table 1 and Table 2.  Interactions are published by

and subscribed to by federates depending on the structure of the federation.  Table 3 is the

Attribute/Parameter Table for a Tank Object and the Weapon Detonate Interaction.  For

each Object/Interaction the

Object/

Interaction

Attribute/

Parameter

Data

Type Cardinality Units Resolution Accuracy

Accuracy

Condition

Update

Type

Update

Condition T/A U/R

<class> | 
<Interaction>

<attribute>I

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition> <type>

<rate> | 

<condition> <ta> <ur>

<attribute>I

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition> <type>

<rate> | 

<condition> <ta> <ur>

... ... [<size>] ... ... ... ... ... ... ... ...

<class> | 
<Interaction>

<attribute>I

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition> <type>

<rate> | 

<condition> <ta> <ur>

<attribute>I

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition> <type>

<rate> | 

<condition> <ta> <ur>

... ... [<size>] ... ... ... ... ... ... ... ...

<class> | 
<Interaction>

<attribute>I

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition> <type>

<rate> | 

<condition> <ta> <ur>

... ... ... [<size>] ... ... ... ... ... ... ... ...

Tank Area Float 1 m2 0.1 m2 perfect always conditional scen events TA UR

Velocity Double 1 m/sec 1 m/sec .01 m/sec none periodic 10 Hz TA UR

State Tank_Type 1 n/a n/a n/a n/a conditional scen events TA UR

Position Rectng_Type 1 n/a n/a n/a n/a periodic 10 Hz TA UR

Weapon

Detonate Warhead Wh_Type 1 n/a n/a n/a n/a n/a n/a n/a n/a

Table 3: Attribute/Parameter Table

attributes or parameters are defined and characterized by multiple descriptors like data

type and units of measure.  The second to last column, Transferable/Acceptable refers to a

federate’s ability to transfer or accept the responsibility to update the specified attributes

for a particular entity.  For a FOM, the only acceptable entries are (TA) for

Transferable/Acceptable or (N) for Not Transferable/Acceptable.  The last column refers

to a federate’s capability to update (U) and reflect (R) attributes or parameters.  In a

FOM, all attributes or parameters should be marked both updatable and reflectable.
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2. Simulation Object Model

A FOM is the union of all SOMs used to define the federation.  The SOM uses the

same templates as the FOM.   The Object Class Table in Table 1 describes the object

classes represented  in the federation.  A SOM object class structure table would

designate which classes the federate publishes (P) and which it has the capability to

subscribe (S).  For example, the F-16 federate might publish the F-16 object and

subscribe to air vehicle so it would know the location and speed of all other aircraft in the

federation.  Similarly, the Object Interaction table would differ in the last column because

the federate must identify what interactions it has the capability to process.  The F-16

federate might put a (R) in the last column of Table 2 to indicate that it reacts to a

Weapon Detonation at an Air Target.  Additionally, a (I) might go in the last column for

Weapon Detonate at Ground Target to show that the F-16 federate initiates the interaction

to fire weapons at a ground target.   Finally, the last two columns in the

Attribute/Parameter Table would be modified to show what capabilities the federate has

in regards to its ability to transfer and accept attributes or update and reflect attributes.

3. FOM/SOM Lexicon

To achieve interoperability between simulations, all data required by the

federation must be fully explained.  It is not enough to merely specify the classes of data

required by the templates above.  The semantics of this data must also be explained.  The

FOM/SOM Lexicon provides a means for federations to document the definitions of all

terms utilized during construction of FOMs, and for individual federates to document the

definitions of all terms provided in their SOMs.

C. INTERFACE SPECIFICATION

The IF Spec [9] describes the runtime services provided to the federates by the

RTI, and from the federates to the RTI.  There are six classes of service.  Each defines a

specific set of functions that pertain to a particular type of transaction that must be

accomplished to properly manage the federation.  There are two locations where the

function definitions reside: the RTI ambassador and the federate ambassador.  The RTI

ambassador is the software component provided by HLA and contains all the

functionality required to accomplish communication to the network.  The federate

ambassador is the RTI’s interface to the federate.  To pass data to the federate, the RTI

ambassador makes function calls to a user defined federate ambassador.  The RTI

ambassador is the same for all federates but the federate ambassador is different for each
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federate.  A full explanation of each function can be found in the HLA IF Spec.  The

following discussion deals mainly with the purpose of each management service.

1. Federation Management

Federation management services offer the basic functions required to initiate the

federation, add federates and delete federates as the federation finishes execution.  These

services include Create, Join, Pause/Resume, Resign and Destroy federation.

2. Declaration Management

Declaration management defines the services required to support efficient

management of data exchange.  It does this by providing the services that allow federate’s

to identify to the RTI ambassador the object and interaction classes they will publish and

subscribe.  This service includes Publish, Subscribe, and Control actions on specific

object classes and interactions.

3. Object Management

Object management services refer to all the functions required to manage the

update of object attributes during federation execution.  The services include Request

Object ID numbers, Update object attributes, Sending Interactions, Receiving object

updates, Receiving interactions, Deleting objects and Changing transportation

characteristics.

4. Ownership Management

Ownership management refers to the dynamic transfer of ownership of object

attributes during federation execution.  The services include Request attribute ownership,

Divest Attribute ownership and Release attribute ownership.

5. Time Management

Time management services support the synchronization of runtime simulation

data exchange.  The current HLA time management service provides support for time-

step and event-driven simulation systems but support for platform level real-time

simulations is limited to wall clock time.
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6. Data Distribution Management

Data distribution management supports the efficient routing of data among

federates during the course of a federation execution.  This service allows federates to

identify regions of interest and limit attribute to entities that fall into those regions.

D. HLA RULES

There are ten basic rules that define the responsibilities and relationships between

HLA federates and the federation.  There are ten rules: five rules apply to federations and

five rules apply to federates [10].

1. Federation Rules

· Rule 1: Federations shall have an HLA FOM, documented in accordance with the
HLA OMT.

· Rule 2: In a federation, all object representation shall be in the federates, not in the
runtime infrastructure. This means that the RTI cannot be used to track entity state. All
entity representations are defined by the federate and communicated to other federates via
the RTI.

· Rule 3: During a federation execution, all exchanges of FOM data among federates
shall occur via the RTI.

· Rule 4: During a federation execution, federates shall interact with the RTI in
accordance with the HLA IF Spec. The only way to interface with the RTI is through the
RTI ambassador and the services provided in that class

· Rule 5: During a federation execution, an attribute of an instance of an object shall
be owned by only one federate at any given time. No attribute can be published by more
than one federate at a time.

2. Federate Rules

· Rule 6: Federates shall have an HLA SOM documented in accordance with the
HLA OMT. Each simulation must describe the functionality it will provide to the
federation. The federation is not required to use all the functionality supplied by the
federate.

· Rule 7: Federates shall be able to update and/or reflect any attributes of objects in
their SOM and send and/or receive SOM object interactions externally, as specified in their
SOM.

· Rule 8: Federates shall be able to transfer and/or accept ownership of attributes
dynamically during a federation execution, as specified in their SOM.
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· Rule 9: Federates shall be able to vary the conditions (e.g., thresholds) under which
they provide updates of attributes of objects, as specified in their SOM.

· Rule 10: Federates shall be able to manage local time in a way that will allow them to
coordinate data exchange with other members of a federation. Non-time managed federates
manage time internally in their own way, but time managed federates must manage time in
such a way so it appears there is only one clock.

E.  HLA CONCLUSION

 The HLA architecture is designed to improve the method of simulation interaction

by making certain types of simulation systems reusable among disparate simulation

applications.  It accomplishes this goal by providing a standard method of communicating

simulation capabilities (SOM) and a standard method of defining how those simulations

will communicate on the network (FOM).  The RTI provides the communications link to

manage the operation of a federation using the IF Spec.  The HLA rules link it all together

by providing guidelines that ensure designers will use all the components is such a way as

to accomplish the goal of reusable inter-operating simulations
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IV. IMPLEMENTATION

A. INTRODUCTION

The goal is to provide a dynamic, flexible, and consistent environment for three-

dimensional networked virtual environments.  Consistency is accomplished by ensuring

all modules are available locally or via the network from a centralized location.  As the

simulation executes, users decide which terrain module to use and which simulation

entities will populate the environment.  Bamboo provides the ability to dynamically load

and unload modules.  The ability to add a module provides dynamic extensibility.  It is

the ability to unload modules that makes the system flexible.  Flexibility requires that the

implementers can change the virtual environment on the fly without restarting.

To this end, the implementation has three major components: the HLA

administration module (amHLAAdmin), entity modules, and terrain modules.  The

amHLAAdmin module manages the communication layer (RTI), module loading and

unloading, and all participating entity objects.  Each entity module represents the

behavior and polygonal representation for each entity.  The terrain modules are the same

as the entity modules but they must be identified as terrain for the amHLAAdmin module.

These modules make up the core of this implementation.  Each component is described in

detail in the following sections.

1.  HLA Administration Module (amHLAAdmin)

The amHLAAdmin module manages HLA RTI communications, Bamboo

function calls, the execution window, and entities in the environment.  All modules

designed for the implementation depend on the amHLAAdmin module.  Therefore,

Bamboo ensures it loads before any entity or terrain module.  Similarly, the

amHLAAdmin module depends on various modules being loaded before it.  Figure 3

shows the module dependency tree for a typical execution.  Notice that amEntity and

amTerrain depend on amHLAAdmin, and that amHLAAdmin depends on Visual,

Keyboard, and amPageModule.
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Bamboo

Visual Keyboard amPageModule

amHLAAdmin

amEntity amTerrain

Figure 3: Implementation Module Dependency View

Since the amHLAAdmin module must communicate with the RTI and

entity/terrain modules, the API and pure virtual class provide the interface to accomplish

this communication.  Essentially, the amHLAAdmin module instantiates the Admin class

object.  Through static functions, the Admin class provides the API for entity/terrain

modules to communicate with the RTI and manage instances of their entities.  Each

entity/terrain class must inherit from amObject.  This object defines the interface for the

Admin object to communicate with entity/terrain modules.

Figure 4 shows the object model used by this implementation.  This figure

illustrates the relationship between the Admin object and the entity modules.  It also

shows how the pure virtual class amObject is used to ensure that each federate transmits

and receives all information pertinent to the federation.  An entity update coming from

the network begins in the RTI ambassador receive buffer.
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Figure 4: Object Interface

Next, the RTI ambassador calls the AdminFederateAmbassador-::reflectAttributeValues()

function in the federate ambassador).  The federate ambassador is the RTI ambassador’s

interface into the federate.  This function simply calls the Admin object function to pass

the AttributeHandleValuePair to the appropriate entity.

void AdminFederateAmbassador::reflectAttributeValues

        ( RTI::ObjectID                           theObject,

          const RTI::AttributeHandleValuePairSet& theAttributes,

          RTI::FederationTime                     theTime,

          const RTI::UserSuppliedTag              theTag,

          RTI::EventRetractionHandle              theHandle )

     throw (RTI::ObjectNotKnown,

            RTI::AttributeNotKnown,

            RTI::InvalidFederationTime,

            RTI::FederateInternalError)

{

Admin::receiveUpdate(theObject,theAttributes,theTime,theTag,theHandle);

}// end reflectAttributeValues

ObjectID  is the ID number for the specific entity
The UserSuppliedTag  specifies the module name. 
The other parameters are not used in this implementation.

Called by the RTI Ambassador to pass
the AttributeHandleValuePairSet  to a specific entity

Figure 5: Federate Ambassador Code Fragment
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The federate ambassador calls the Admin::receiveUpdate() function in the Admin

object (Figure 6).  This function locates the entity object, an amObject type, in the object

list.  If the object exists, it is updated.  If it does not exist, the Admin object checks to see

if the module is loaded.  If the module is loaded, then another object representing that

entity is instantiated.  If the module is not loaded, it is loaded and an object representing

the entity is instantiated.

void Admin::receiveUpdate( RTI::ObjectID theObject,

          const RTI::AttributeHandleValuePairSet& theAttributes,

          RTI::FederationTime                     theTime,

          const RTI::UserSuppliedTag              theTag,

          RTI::EventRetractionHandle              theHandle )

{

amObject* tmp = Admin::findSimEntity(theObject); // find the correct object

if (tmp)

tmp->receiveUpdates(theObject,theAttributes,theTime,theTag);

else { // add module if necessary or add simEntity

   if (Admin::moduleLoaded(theTag)){ // is module loaded

cout << "adding new " << theTag << endl;

    Admin::addSimEntity(theTag,theObject);

}// end if

   else {

cout << "Loading Module " << theTag << endl;

   Admin::loadModule(theTag);

   Admin::addSimEntity(theTag, theObject);

} } }

Called by the Federate Ambassador to pass
the AttributeHandleValuePairSet  to a specific entity

managed by the Admin object

Locates amObject in list

Pass attributes to amObject

Add entity of module already loaded

Load module and add entity from module

Figure 6: Admin Object Code Fragment

The Admin object iterates the list of entities and calls the

EntityObject::receiveUpdates() function of the appropriate entity (Figure 7).  This

function is defined in the amObject pure virtual class.  This function iterates the

AttributeHandleValuePair and sets the appropriate state variables in the entity object.
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void Boid::receiveUpdates( RTI::ObjectID oid,

const RTI::AttributeHandleValuePairSet& theAttributes,

RTI::FederationTime theTime, RTI::UserSuppliedTag theTag)

{

RTI::AttributeHandle attrHandle;

unsigned long        valueLength;

for ( unsigned int i = 0; i < theAttributes.size(); i++ ) {

attrHandle = theAttributes.getHandle( i );

      if ( attrHandle == Admin::getPositionAttrHandle() ){

         npsVec3f tmp;

         theAttributes.getValue( i, (char*)&tmp, valueLength );

         setPosition(tmp);

      }//end if

      else if ( attrHandle == Admin::getOrientationAttrHandle() ) {

npsQuaternion tmp;

         theAttributes.getValue( i, (char*)&tmp, valueLength );

         setOrientation(tmp);

      }// end else if

      else if ( attrHandle == Admin::getVelocityAttrHandle() ) {

npsVec3f tmp;

         theAttributes.getValue( i, (char*)&tmp, valueLength );

         setVelocity(tmp);

} } }

Called by the Admin object to pass
the AttributeHandleValuePairSet  to the entity

Iterate theAttributes  and set the values in the entity object

Figure 7: Entity Object Code Fragment

The Admin object is the portion of the amHLAAdmin module that implements

the Admin API.  This API is fully described in Appendix A: Implementation Tutorial.

Users apply the Admin API to ensure their modules are managed as part of the HLA

federation and the entities they represent are properly registered and updated by the RTI.

Proper use of the API insures that the federation will comply with HLA Rules.

The amHLAAdmin module loads and unloads modules in two ways: either

automatically at the request of the system or explicitly at the request of the user.  The

Admin class defines certain API functions that load and unload modules at the request of

a module or the system.  Finally, the amHLAAdmin module loads user requested

modules using a separate module called the amPageModule on which it depends.  This

module loads automatically when the amHLAAdmin module loads.  The amPageModule

executes the Bamboo calls that load and unload user requested modules. It installs two

keyboard events that the implementer uses to arbitrarily load and unload modules.

 The amHLAAdmin module manages all of  the simulation entities.  Functionality

related to this task are the HLA object management tasks like registering and deleting

objects and ensuring state updates transmit to the correct entity.  The amObject class, that

all objects inherit from, allows the amHLAAdmin module to iterate its list of simulation
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entities and update each object based on its ObjectID, an identification number provided

by the RTI.

Each module’s capability means nothing unless the executable is extended to

include the new module.  Figure 8 illustrates the execution tree used in this

implementation.  The amHLAAdmin module created the symbols in bold outline when

the module loaded.  A1 is a callback attached to the main callback handler created by the

Bamboo core.  A1 “ticks” the RTI to provide CPU time to the RTI ambassador and the

federate ambassador.  This callback drives the federate by processing all updates and

providing them to the correct simulation entity.  A2 is a callback attached to the draw

callback handler of the Visual module.  This callback calls the display function of all

simulation objects using a call to a virtual function defined in amObject that all

simulation entities must implement.  Finally AK is the callback representing all keyboard

events that are processed by the amHLAAdmin module.
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Figure 8: Execution Callback Tree
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2. Simulation Entities (amEntity/amTerrain)

As the VE executes, if an entity is updated that is not currently represented on the

local machine, the RTI initiates the discovery process.  The UserSuppliedTag, a character

string that is transmitted with each update handle value pair, represents the module name.

The handle value pair is the HLA method of creating a byte array for transmission on the

network.  If this module is already loaded, then another object from this module is

instantiated.  If the module does not exist, then Bamboo loads it and instantiates an object

that represents the newly discovered entity.

Each simulation entity is a Bamboo module.  Each module has two major

components: the object’s polygonal representation and its general behavior.  Therefore,

when a module loads as a result of a remote object update, the user collects all the

controls of that module.  Then Bamboo plugs the module into the local event loop so

local processing can compute entity appearance and behavior.  Figure 4 shows the entity

module loaded and inserted in the executable with two sets of callbacks.  B1 is the preapp

callback that gives the user the ability to control the object with keyboard input.  BK is

the callback for all the keyboard inputs defined by the module.

Because this system passes behaviors along with polygonal representation, there is

an opportunity to reduce network traffic by reducing the details of entity behavior that

previous systems transmitted via the network.  This occurs because each entity computes

its behavior locally not from a remote location.  For instance, each entity provides

collision event behavior locally without the need for multiple interactions transmitted

across the network.  Now the entity module notifies the federation only that a collision

occurred, not resulting detailed state changes.  Each entity computes those state changes

locally as a result of the interaction.   The result is a series of simulation actors whose

behaviors and polygonal representations load dynamically at runtime.  This allows

simulation managers to easily experiment with the content of the environment by adding

and subtracting functionality at runtime.  The tendency is to think that this applies only to

the graphically represented entities but it could mean that data loggers or analysis

modules dynamically load and unload to collect and analyze simulation data.  Bamboo

provides an unprecedented method of adding functionality to an executing networked

virtual environment.

3. Graphics Rendering

Bamboo’s Visual module renders the graphical objects in the scene.  The

amHLAAdmin module and the entity modules update the object's position and



24

orientation.  Each entity module registers callbacks with the Visual module to ensure

accurate rendering of the simulation entity.  These callbacks call the appropriate functions

when the system needs to render the graphical representation of each entity.  See Figure 4

for the callback tree representing this implementation.

B. FEDERATION OBJECT MODEL/SIMULATION OBJECT MODEL

This implementation has a simple FOM. Table 4 displays the FOM tables for the

implementation.  The FOM and SOM are the same for this implementation because each

federate is based on the amHLAAdmin Module common for all federates.   The FOM

defines the Entity State Object and its attributes that define the state of the object.  The

Entity State Object defines the attributes that will be communicated to the network.  Do

not confuse this object with the software objects defined in the implementation.  Those

C++ objects may define more variables that define their state but are not communicated

to the network.   The FOM also defines a very simple interaction called Collision.  Its

only parameter is the ObjectID number assigned to the entity that has been collided with.

The purpose of this interaction is to communicate to the federation the ObjectID of the

entity that was damaged.  Each federate then updates the state of that entity.

Object Class Structure Table

EntityState (PS)

Class

Affected 
Attributes Class

Affected 
Attributes

Interaction 
Parameters

Init 
Sense 
React

Collision EntityState None EntityState Damage EntityID IR

Initiating Object Receiving Object
Object Interaction Table

Interaction 
Structure

Object/Interactio
n

Attribute 
Parameter Datatype

Card-
inalit

y Units
Reso-
lution Accuracy

Accuracy 
Condition

Update 
Type

Update 
Condition

Transferabl
e 

Acceptable

Updateabl
e 

Reflectabl
e

Position any 1 perfect always Periodic TA UR

Orientation any 1 perfect always Periodic TA UR

Velocity any 1 perfect always Periodic TA UR

Ammunition any 1 perfect always Periodic TA UR

Damage any 1 perfect always Periodic TA UR

Collision EntityID
unsigned 
long 1 perfect always N/A N/A N/A N/A

Attribute Parameter Definition Table

EntityState

Table 4: Implementation FOM Tables
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C. IMPLEMENTATION CONCLUSION

Recall the goal is a dynamically extensible, flexible, consistent, and specific NVE.

Dynamic extensibility is accomplished by using Bamboo to load and unload modules.

The NVE is consistent because the amHLAAdmin module ensures all entity and terrain

modules required by the designers be loaded when required.  Each module is specific

because the programmer is only concerned with one module representing a particular

entity.  That programmer no longer has to concern himself with the representations and

behaviors of the other entities in the environment.  Finally, all of this adds up to flexible

environment that can be changed during runtime to the state required by the simulation

managers.

The preceding sections provide the overview of how the implementation

accomplishes the goal of providing a dynamically extensible, flexible, specific and

consistent NVE.  Appendix A provides a detailed implementation tutorial that guides a

user through the details required to implement an amEntity module.  Appendix B

provides the code examples that accompany the implementation tutorial.  Together these

two documents walk a user through the correct use of the HLA RTI, Bamboo and the

amHLAAdmin module.
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V. RESULTS AND LIMITATIONS

A. PERFORMANCE RESULTS

Two measures of performance were used to judge the merits of this

implementation: frame rate per second and average time to clear the event buffer.  Frame

rate per second describes how the implementation impacts the graphics subsystem.

Falling below ten frames per second severely hampers virtual environment realism.  Time

to clear buffers shows the impact of increasing numbers of entities on the system’s ability

to update each one.   Each measure was sampled with different communication reliability

parameters, specific numbers of entities, and federates participating in the environment.

1. Test Description

The system used to evaluate the implementation is a Windows NT 4.0 LAN, with

a 166 MHz Pentium MMX CPU and 32 Megabytes of RAM.  Each system connects to

the 100 Mbps LAN with a 3Com 10/100 Mbps network interface card through a 100

Mbps hub.  The graphics subsystem on these systems is not accelerated.  All graphics are

computed on the system processor.  There was a single federate per system.  Each

federate computed and transmitted position, orientation, and velocity data every fifth

frame.

Transport for Attribute Updates and
Interactions is Either Reliable or Best-Effort

Federation
Execution

Fed Ex is the RTI 1.0 exploder
for all reliable comm: TCP/IP streams

Best-effort traffic via IP multicast

Federate A

Federate B

Federate A

Federate B

Federate C

Federate D

Federate C

Federate D

IP Multicast
Address

Figure 9: HLA Message Transport Types



28

There are two communication reliability settings defined by the HLA IF Spec:

FED_RELIABLE and RED_BEST_EFFORT.  FED_RELIABLE uses the federation

execution to ensure that each message of this type is delivered to each federate in the

federation.  This adds a significant number of messages to the network since

acknowledgements are required to confirm delivery of each message.

FED_BEST_EFFORT reduces message traffic compared to FED_RELIABLE because

each federate transmits its messages to a multicast address where every other federate

reads the messages.  There is no requirement for acknowledgements, but there is a small

chance that a message may be delivered improperly or not at all. Figure 9shows

graphically the differences between FED_RELIABLE and FED_BEST_EFFORT

reliability settings. FED_RELIABLE transport creates a bottleneck because the federation

execution process acts as a server ensuring that all federates receive each update.  The

FED_RELIABLE transport type only allowed two federates in the federation before the

federation execution was bottlenecked, so no further measurements were taken.  Two

federates does not make a very interesting virtual world.

2. Frame Rate Results

Figure 10 shows the frame rate results for a federate using the

FED_BEST_EFFORT transport protocol.  Notice that the frame falls as the number of

entities in the federation increases.  This is to be expected.  Each new federate brings 44

more polygons to the virtual world.
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Figure 10: Performance Results

3. RTI Event Buffer Read Results

Figure 10 shows the time to clear buffer results.  The time to clear buffer is the

time required to process all events in the RTI event queue.  In this implementation all

events are attribute updates.   This test shows the average time it took to clear the event

buffer. Recall that the reliable transport type was only able to accommodate two federates

with a total of 22 entities in the federation, while the best effort transport type

accommodated more than three times that with 7 federates and 77 entities.  Notice that

the average time to clear the buffer increases with the number of entities in the federation.

This could limit scalability, but recall the limited power of the test systems and that the

entity module in the test does not implement dead reckoning.  Dead reckoning could

reduce the number of entity updates thus improving the time to clear the buffer.

B. LIMITATIONS

There are two major limitations in this implementation.  The RTI limits the

implementation due to its static nature.  The design of the amHLAAdmin module is

limited because it lacks a method of extending the executable by providing a separate

thread to handle entity updates.
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1. HLA/RTI Generalization

This implementation is generalized except for the HLA/RTI functionality.  The

RTI limits the functionality in two ways.  First, the RTI’s use of text files and

environment variables limit the flexibility of this implementation.  An API interface that

set the RTI’s state would significantly increase the flexibility of the system.

Implementation of the HLA functionality requires that RTI be installed on every machine

it is used on.  It would be much more flexible if the RTI could be instantiated anytime and

its state set with API function calls.  This would allow the RTI to be part of the

amHLAAdmin module and could be loaded in one step without having to actually install

the RTI so that the static text files and environment variables are defined.  Second, the

FOM is predefined and parsed by the RTI at runtime.  If there was an API interface to

change the FOM during runtime, the federation could extend its capability without

requiring that the federation execution be restarted.

2. HLA Memory Footprint

Each federation has three processes that must exist in order for the federation to

operate: the RTI executive process, the federation executive, and at least one federate.

The RTI executive process requires approximately 2.5 MB of RAM in order to run, while

the federation executive requires 2.5 MB.  Each federate’s memory requirements will

vary, but the local RTI component, or RTI ambassador requires 12 MB.  This is a total of

17 MB required on one system.  This is a significant amount of memory that must be

considered when designing systems portable to desktop systems.

3. amHLAAdmin Module Limitations

The amHLAAdmin module does not provide a method for extending the

executable.  If this module provided a set of callbacks similar to the visual module’s app,

cull, draw system, the implementation could better control the sending and receiving of

information through the RTI.  For example, a separate thread could be started that

continuously “ticks” the RTI, thus keeping its receive buffers clear.  Additionally, a

generalized system that allows each module to register callbacks on an update loop would

provide a more efficient method of updating entity state.  These improvements were not

made because the significance of the processing time required to update entity state was

not discovered until the final performance tests were run.  Future improvements to the

system will require a better method of managing processor time for the RTI to update

entity state.
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VI. CONCLUSIONS

A. CONCLUSION

The implementation meets the requirements set out in the introduction concerning

the improvements NVEs require.  The requirements are the virtual environment must be

dynamically extensible, flexible, specific, and consistent.  This implementation is

dynamically extensible.  Bamboo does an excellent job of providing this capability by

implementing the ability to dynamically extend the executable and providing a system

that defines module dependency.  The ability to load and unload modules on the

command of the user or the system at any time during execution adds flexibility to the

NVE.  This means simulation designers can rapidly prototype simulation executions in

real time and effectively design and implement the virtual environment.  This

demonstration verifies that simulation designers can be more specific.  In other words,

programmers just need to implement their module.  They no longer need to represent the

other entities that will exist in the NVE or approximate their behavior.  An entity module

that can be loaded as the situation changes and unloaded when no longer needed

represents these remote entities.  Finally, this system ensures that all simulations

operating in the NVE are consistent with each other.  The problem of different terrain

models at each simulation site is solved because all sites receive the terrain module from

the same location and execute it in the same manner.  This same logic applies to the entity

modules.

B. FUTURE WORK

The following lists future projects that could improve real time virtual

environments.

1. Network Bandwidth and Latency of the RTI.

It is very difficult to quantify the effects the RTI has on the network.  We do not

know the methods used to keep the distributed local RTI components updated.  What is

the time management method employed by the RTI?  How are the receive buffers filled

and emptied?  What is the most efficient method of clearing the buffers?  The results

indicate that more information is required to increase the numbers of entities modeled in a

real time virtual environment.
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2. Methods for Reducing Network Traffic Required to Maintain

Consistent Entity State.

This work refers to ways to improve the RTI for real-time simulations.  Area of

interest management is a method of accomplishing this goal.  The new version of the RTI,

version 1.3-3, has implemented its own area of interest management system call Data

Distribution Management (DDM).  Future work could entail implementing support for

DDM into this implementation.

3. Improvements to the Current Implementation

There are several ways to improve this implementation.  First, the amHLAAdmin

module could implement a series of callback handlers that accomplish the entity updates

and interactions required by the system.  This improvement would make the

implementation more general by removing the requirement for the amObject pure virtual

class interface.  Next, multi-thread the implementation to provide specific amounts of

processing time to the RTI and visual module.  Finally, implement a system that ensures

that locally computed objects are updated first.  Currently, all entities are in the same list.

Locally computed objects should have a separate list so they may be updated at a greater

rate.
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APPENDIX A: IMPLEMENTATION TUTORIAL

A. INTRODUCTION

This tutorial describes how to implement a module that will operate using the

HLAAdmin implementation. It has three sections: Bamboo module implementation, HLA

Implementation, and Demo.  The Bamboo module implementation section describes how

to build a module for use with the Bamboo virtual environment toolkit.  The HLA

implementation section outlines the HLA concepts that the user must understand to

implement a module for the HLAAdmin implementation.  Finally, the Demo section

describes how to run the existing implementation.  Taking each section in turn will ensure

the user of an overall understanding of the HLAAdmin implementation.

The system requirements for this implementation are, Windows NT 4.0, Visual

C++ 5.0, RTI 1.0-3 and rktools.  Visual C++ is the compiler used in the examples and

rktools provides the functionality needed to use makefiles that are very similar to UNIX

makefiles.  All the RTI functionality described in this tutorial is explained in detail in the

RTI Programmers Guide, see the bibliography in the main section of the thesis.

B. BAMBOO MODULE IMPLEMENTATION

The easiest way to grasp how to implement a Bamboo module is to use one as an

example.  I will use the amBoid module, available in the code appendix, as the example

module.  Bamboo modules are made up of a minimum of four files:  module.h, module.c,

amBoid.h, amBoid.c.  (The amBoid files are examples; any name can be there.)  Each

module is identified to the Bamboo kernel by six global functions defined in the module.c

file: getModuleName(), getModuleVersion(), getModuleDate(), getModuleText(),

initModule() and exitModule().  As a module is loaded, Bamboo creates a bbModule

object that holds pointers to these functions.

When the module is loaded, the bbModule object executes the initModule()

function.  The initModule() function does the work required to add the module to the

executable and instantiate any object required by the module.  The exitModule() function

removes the structures used to integrate the module into the executable and deallocates
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the memory associated with any objects created for use by the module being deleted.

Notice in the example module.c that the definition for the initModule() function makes

one call to the initamBoid() function in amBoid.c, and the exitModule function makes

one call to the exitamBoid() function in amBoid.c.

The initamBoid() function does the functions described above.  This function is

run only once immediatley after the module is loaded into memory.  First, it instantiates a

Boid object for use by the module.  Then it calls the initKeyboardFunc() to add callbacks

for keyboard events.  This is one way to add the module into the program execution.  The

other method is to add callbacks that will include the module’s functionality into the

executable.  This module is added to the executable by adding callbacks to the Visual

module.  The initVisualModule() function adds a callback to the preapp callback handler.

The callback is associated with the preAppFunc() defined in amBoid.c.  This function

defines the keyboard controls and behavior for the Boid object created in the loadBoid()

function.  After this function is executed, the module executes as part of the Bamboo.exe

executable until a command to unload the module.

On the command to unload a module, the bbModule object calls the exitModule()

function defined in the module.c file.  This function in turn calls the exitamBoid()

function.  The exitamBoid() does the housekeeping required to remove from memory all

structures like callbacks or objects related to the module.  In this case, the exitamBoid()

function first removes the event responses from the keyboard.  Notice that these

commands are in the reverse order of the commands that were used to create the keyboard

events.  Next the preapp callback is removed.  Finally, all objects associated with this

module are deleted from memory.

The last Bamboo feature that will be discussed deals with module dependency.

Bamboo extends the plug-in metaphor by implementing a system that allows modules to

depend on other modules for execution.  In this example, the amBoid module depends on

the npsVisualModule, the bbKeyboardModule and the amHLAAdmin module.  The

module.txt file defines these dependencies.  Bamboo ensures that all dependent modules

are loaded first before the module that needs them is loaded.
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This concludes the Bamboo section.  It is not complicated to load and unload a

Bamboo module.  The user is required only to define the six functions in the module.c

file.  Understand that Bamboo’s greatest strength is its convention that defines

generalized methods to load and unload modules while providing a system that ensures

module dependencies are enforced.

C. HLA IMPLEMENTATION SECTION

HLA is implemented mainly in the amHLAAdmin module.  Entity modules just

make an Admin API call to pass or receive information to the RTI. There is one exception

to this that I will address later in this section.  The Admin API wraps ups all RTI

ambassador functions.  When the amHLAAdmin module loads, it instantiates a single

object of type Admin.  The entire API is static functions defined in the Admin class.

The Admin class uses the following RTI functionality (* is a Federate

Ambassador function):

Federation Management
CreateFederationExecution
JoinFederationExecution
ResignFederationExecution
DestroyFederationExecution

Declaration Management
PublishObjectclass
PublishInteractionClass
SubscribeObjectClassAttributes
SubscribeInteractionClass

Object Management
RequestID
RegisterObject
UpdateAttributeValues
DiscoverObject*
ReflectAttributeValues*
SendInteraction
ReceiveInteraction*
DeleteObject
RemoveObject*

RTI Services
Tick
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The RTI has other functions that do not apply to this implementation like time

management and ownership management.  If this functionality is required, the Admin

object can be extended.  Refer to the Admin.c file in the code appendix for the following

functions.  Notice the Admin class constructor is protected.  There can be only one

instance of the Admin class active so a singleton is implemented called getInstance() that

creates the object the first time it is called and returns the pointer to the object every time

it is called.  The Admin constructor instantiates the RTI ambassador (rtiAmb) and the

Federate ambassador (fedAmb) objects.  The rtiAmb is the predefined object that contains

all the functionality that implements the IF Spec. The fedAmb is a pure virtual class that

defines the interface between the RTI and the implementation.  Each rtiAmb call results

in a return value from the RTI or, in the case of updates, a call to a fedAmb function.  Let

us discuss how the implementation uses each of the above RTI services and discuss the

code that implements the service.

1. Federation Management

The Admin constructor shown in Admin.c. makes calls to

Admin::createFederationExecution() and Admin::joinFederation().  The

createFederationExecution() function calls Admin::rtiAmb-

>createFederationExecution(fedExecName) and passes it a char* that defines the name of

the Federation execution.  If the federation already exists, the rtiAmb throws a federation

already exists exception.  If the federation is new, then a fedex process is spawned by the

RTI.  The Admin::rtiAmb->joinFederationExecution(federateName, fedExecName,

fedAmb) passes it the name of the federate, the federation execution name and a reference

to the fedAmb object.  The name of the federate is name mangled by the RTI so it does

not have to be unique and the fedExecName must be the same as was used in the

createFederationExecution() function.  The fedAmb reference is a pointer to the fedAmb

created in the Admin constructor.  The loop is used to give to the federate multiple tries to

join the federation because the federation execution may require more time to configure

itself before it is able to return the federate ID.  The federateID is a unique number

assigned by the fedex that identifies your federate. It is not required anywhere but may be

required by the user.
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The Admin::resignFederate() function handles the resign federate and destroy

federate management functions.  This function first calls Admin::rtiAmb-

>resignFederation() and passes an enumeration that defines the clean up the user wants

done prior to federate resignation.  The implementation uses

DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES.  This value results in

removeObject() calls to the fedAmb for all locally updated entities and releases the

attributes on any objects that must transfer attribute ownership because the federate is

resigning.  The final call in this function is to the Admin::rtiAmb->destroyFederation().

This function destroys the federation if there are no other federates operating, otherwise

an exception is thrown and the federation continues.

2. Declaration Management

Declaration Management identifies to the rtiAmb all the objects/interactions and

attributes/parameters that the federate is interested in.  After the federate is joined, the

user must get from the rtiAmb the enumerated values for the objects/interactions and

attributes/parameters computed when the FOM was parsed.  The Admin::Init() function

uses RTI support functions that use the information from the FOM to provide these

enumerated values for the different objects/interactions and attributes/parameters.  Notice

the Init() function uses specific functions that provide the enumerated values for the

different Objects (getObjectClassHandle(char *)) and Attributes

(getAttributeHandle(ObjectTypeEnum,char *)) that will be used by the federate.  The

char * parameter must match exactly with the strings used to describe the Objects and

Attributes in the FOM.

After the enumerated values are saved by the user using the Init() function, the

user calls the Admin::PublishAndSubscribe() function.  This function makes RTI calls

that tell the rtiAmb which Objects/Interactions and Attributes/Parameters the federate will

publish and subscribe.  The mechanics of this operation begin with the user building an

RTI::AtrributeHandleSet.  This data structure holds the attribute enumerations for a

specific object.  The first part of the PublishAndSubscribe() function builds the

RTI::AtrributeHandleSet.  First the set is declared.  Then space is allocated for five

attributes using the create method of the RTI::HandleSetFactory object.  Finally, all
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attributes that the federate wants are added to the set using the add(AttributeHandle)

method and passed the enumeration for the specific attribute to be added.  After all the

attributes are added to the HandleSet the Admin::ms_rtiAmb-

>subscribeObjectClassAttribute( ClassHandle, *HandleSetFactory ) and

Admin::ms_rtiAmb->publishObjectClass(ClassHandle, *HandleSetFactory) are called to

tell the rtiAmb those objects that will be published and subscribed.  The last functions are

for subscribing and publishing Interactions.  Notice that these functions do not require a

HandleSetFactory.  When a federate subscribes or publishes an interaction, it accepts

responsibility for all the parameters of that interaction, hence there is no need to tell the

rtiAmb which parameters it is responsible for.

The above functions accomplish all the tasks required to publish and subscribe to

objects/interactions and attributes/parameters.  These are required tasks that all federates

must accomplish in order to participate in the federation.

3. Object Management

Object management services provide the functionality to identify entities to the

RTI, discover them on remote federates, and update their attributes during the federation

execution.  The RTI requires that all entities are associated with an Object defined in the

FOM.  All entities must possess a unique ID number provided by the RTI.  This number

identifies the entity on all federates in the federation and ensures updates and interactions

are processed on the correct entity.

The first task when adding an entity to the federation is getting its ObjectId from

the rtiAmb then registering that ID with the rtiAmb.  The Admin::registerObject()

function accomplishes these tasks.  First the Admin::ms_rtiAmb-

>requestID(RTI::ObjectIDCount, RTI::ObjectId, RTI::ObjectId ) function provides the

ObjectID numbers.  Then the Admin::ms_rtiAmb->registerObject( RTI::ClassHandle,

RTI::ObjectId ) function registers the entity with the rtiAmb and associates it with a

Object that was previously published or subcribed.

After the object is registered with the rtiAmb, the entity will be updated and its

attributes reflected on all participating federates.  This task requires that the entity be

discovered by each federate in the federation.  Discovery requires that the entity be
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updated at least once.  On the first update, the rtiAmb calls the

FederateAmbassador::discoverObject() function.  This function then ensures the module

is loaded that represents this object.  After the module is loaded an entity is instanced and

its state is updated with the attributes passed by the rtiAmb.  Refer to the

AdminFederateAmbassador.c file for the discoverObject() function.  After the object is

discovered, all updates come to it through the

FederateAmbassador::reflectAttributeValues() function.  We will look at how the

attributes are updated first.  Then we will look at the discoverObject() function is detail.

Entities are updated using the rtiAmb->updateAttributeValues() function.  The

implementation calls this function in the Admin::sendEntityUpdate(RTI::ObjectID ,

RTI::AttributeHandleValuePairSet& , const RTI::UserSuppliedTag ).  Each entity must

implement the virtual function sendUpdates() defined in amObject.  This function

produces a RTI::HandleValuePairSet then calls the Admin::sendEntityUpdates() function.

Refer to boid.c in the code appendix for listings of entity functions.  Boid::sendUpdates()

first creates a HandleValuePairSet with the attributes in it that it wants to update.  Then it

calls Admin::sendEntityUpdate() and passes it the ObjectId of the entity to be updated, its

HandleValuePairSet and the UserSuppliedTag which identifies the module that the entity

is modeled by.  Admin::sendEntityUpdates() then calls the Admin::rtiAmb->

updateAttributeValues( ObjectId, HandleValuePairSet, FederationTime,

UserSuppliedTag( ).  This command sends a packet out on the network containing the

data specified.  When a remote federate receives the data the rtiAmb calls the

FederateAmbassador::discoverObject() function if the ObjectId is not known to the

federate or the FederateAmbassador::reflectAttributeValues() function if the entity

already exists in that federate.

The AdminFederateAmbassador:: reflectAttributeValues() function calls the

Admin::receiveUpdate() function.  This function searches the list of entities and then calls

the Boid::receiveUpdates() virtual function defined by the amObject class.  The

Boid::receiveUpdates() function decodes the HandleValuePair using the getValue()

method and updates the appropriate state variable.  It then deletes the HandleValuePair.
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If the entity is not known, the rtiAmb calls the FederateAmbassador

::discoverObject() function.  This function ensures the appropriate module is loaded then

calls Admin::addSimEntity() to ensure the entity is added to the list of entities displayed

by the federate.  On the next update, the entity’s state is updated using the previously

described process.

The process for interactions is very similar.  An entity generates an interaction and

uses its Boid::sendInteraction() function.  This function calls the Admin::rtiAmb-

>sendInteraction() function.  This provides more flexibility to the federate.  The

interaction is received on the remote federates and the rtiAmb calls

FederateAmbassador::receiveInteraction() function.  This function then calls the

Admin::receiveInteraction() function which finds the affected entity and calls the

Boid::receiveInteraction() function.  In this function the parameters changed by the

interaction are modified and the ParameterHandleValueSet is deleted.

This implementation also has the ability to delete entities from the federation.

This is accomplished using the RTI functions deleteObject and removeObject.  When an

entity is identified for deletion, the entity is deleted locally then the rtiAmb is notified of

the deletion through the deleteObject function. This causes a network message that results

in the remote federate rtiAmbs calling the FederateAmbassador::removeObject()

function.  The details follow for this implementation.  First an entity identified for

deletion and its geometry are deleted from the local environment.  Then the

Admin::removeAmObject() function is called.  This function removes the entity from the

object list and calls Admin::rtiAmb->deleteObject() which results in a call to the

FederateAmbassador::removeObject() function.  This function then calls the

Admin::removeAmObject() on the remote federate.  This process notifies the federation

of the entities to be deleted and makes the calls necessary to remove the entity from the

object lists in all federates.

4. RTI Services

The final topic concerns how the rtiAmb is allocated processing time.  The RTI is

a single threaded application, so processing time is allocated through the use of the tick()



41

command.  This command causes the rtiAmb to accomplish tasks such as clearing buffers

and executing callbacks based on the status of the federation.

The tick() function has two forms.  The form used in the implementation ticks the

rtiAmb once for each call.  The other form , tick(min,max), will tick the rtiAmb for a

specific length of time.  Both forms return a boolean value indicating if there are more

events in the queue.  This function must be run periodically in order for the federation to

operate.  Waiting too long to tick can result in overfull buffers that take an inordinate

amount of time to clear thus reducing the overall speed of the federation.  In this

implementation the rtiAmb is ticked once per frame to provide the most updated

information to each federate. 

D. DEMO INSTRUCTIONS

v Start the RTI executive.

v Open two command windows.

v In both command windows, change directory to the bamboo directory.

v Type bamboo amHLAAdmin in both windows.

Ø CTRL-E exits amHLAAdmin ( mouse must be in the execution window )

Ø The federation execution (fedex) should have started in another window

Ø There should be two light green windows ( move the top one to see the other )

v Now add modules to the federation.

Ø Add the Arena Terrain.

§ Type CTRL-L to load module.

§ Enter the module name amArena.

§ Type CTRL-T to promulgate the module to all federates.

v Now populate the environment.

Ø Type CTRL-L to load module.

Ø Enter the module name amBoid.

Ø Type B to create the Boid.

§ Control the boid with the arrow keys.

§ The A key makes it go forward.

§ The S key makes it go backward.



42

v Do the above in both windows.

Ø Turn the boid that you can the other in both windows.

Ø Collide one boid with the other.

§ This produces an interaction.

§ After 10 hits the boid is destroyed and should disappear.

§ To add another boid type  B  again.
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APPENDIX C: GLOSSARY

· attribute
· A named portion of an object state.

· event
· A change of object attribute value, an interaction between objects, an

instantiation of a new object, or a deletion of an existing object that is
associated with a particular point on the federation time axis. Each event
contains a time stamp indicating when it is said to occur (also see
definition of message).

· federate
· A member of a HLA Federation. All applications participating in a

Federation are called Federates. In reality, this may include Federate
Managers, data collectors, live entity surrogates simulations, or passive
viewers.

· federation
· A named set of interacting federates, a common federation object model,

and supporting RTI, that are used as a whole to achieve some specific
objective.

· federation execution
· The federation execution represents the actual operation, over time, of a

subset of the federates and the RTI initialization data taken from a
particular federation. It is the step where the executable code is run to
conduct the exercise and produce the data for the measures of
effectiveness for the federation execution.

· Federation Object Model (FOM)
· An identification of the essential classes of objects, object attributes, and

object interactions that are supported by an HLA federation. In addition,
optional classes of additional information may also be specified to achieve
a more complete description of the federation structure and/or behavior.

· interaction
· An explicit action taken by an object, that can optionally(within the

bounds of the FOM) be directed toward other objects, including
geographical areas, etc.

· message
· A data unit transmitted between federates containing at most one event.

Here, a message typically contains information concerning an event, and is
used to notify another federate that the event has occurred. When
containing such event information, the message's time stamp is defined as
the time stamp of the event to which it corresponds. Here, a "message"
corresponds to a single event, however the physical transport media may
include several such messages in a single "physical message" that is
transmitted through the network.
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· model
· A physical, mathematical, or otherwise logical representation of a system,

entity, phenomenon, or process. [DoD 5000.59]
· object

· A fundamental element of a conceptual representation for a federate that
reflects the "real world" at levels of abstraction and resolution appropriate
for federate interoperability.  For any given value of time, the state of an
object is defined as the enumeration of all its attribute values.

· object model
· A specification of the objects intrinsic to a given system, including a

description of the object characteristics (attributes)and a description of the
static and dynamic relationships that exist between objects.

· object model framework
· The rules and terminology used to describe HLA object models.

· object ownership
· Ownership of the ID attribute of an object, initially established by use of

the Instantiate Object interface service. Encompasses the privilege of
deleting the object using the Delete Object service.  Can be transferred to
another federate using the attribute ownership management services.

· Runtime Infrastructure (RTI)
· The general purpose distributed operating system software which provides

the common interface services during the runtime of an HLA federation.
· simulation

· A method for implementing a model over time. Also, a technique for
testing, analysis, or training in which real-world systems are used, or
where real-world and conceptual systems are reproduced by a model.

· Simulation Object Model (SOM)
· A specification of the intrinsic capabilities that an individual simulation

offers to federations. The standard format in which SOMs are expressed
provides a means for federation developers to quickly determine the
suitability of simulation systems to assume specific roles within a
federation.

· time management
· A collection of mechanisms and services to control the advancement of

time within each federate during an execution in a way that is consistent
with federation requirements for message ordering and delivery.
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